Learning to Rank for Plausible Plausiblity

Zhongyang Li^{1,2} Tongfei Chen¹ Benjamin Van Durme¹ ¹ Johns Hopkins University; ² Harbin Institute of Technology

Summary

The categorical nature of RTE / NLI leads to common use of cross-entropy loss for training, even when some data are designed for *plausibility* prediction, not *entailment*This loss is intuitively odd: it drives models to assign

The Plausibility Task

Given a premise, which hypothesis is *preferred*?

- I just stopped where I was
- *h*_E *I stopped in my tracks*
- $h_{\rm N}$ Istopped running right were I was X

 \checkmark

- score 0.0 or 1.0, in constrast to the proposed *margin-based* loss
- Leads to better calibrated predictions to human intuitions
- State-of-the-art result on the Choice of Plausible Alternatives (COPA) task

 h_N I stopped running right were I was \checkmark h_C I continued on my way \checkmark

E = Entailed; N = Neutral; C = Contradictory

In the plausiblity task, the correct label depends on the alternatives!

CROSS-ENTROPY LOSS

$$P(h_i|p) = \frac{\exp F(p, h_i)}{\sum_i \exp F(p, h_i)}$$

As a *classification* problem – maximizing the posterior probability normalized over all hypothesis alternatives

MARGIN-BASED LOSS

$$L = \frac{1}{N} \sum_{h > h'} \max\{0, \xi - F(p, h) + F(p, h')\}$$

As a *learning-to-rank* problem – more plausible hypothesis should *rank* higher than other less plausible hypotheses

Plausible Plausibility

Margin-based loss gives much more **plausible** scores, leading to a more **plausible** *plausibility* formulation!

Recast MultiNLI			
p	I just stopped where I was	Log	Margin
$\overline{h_1}$	I stopped in my tracks	0.919	0.568
h_2	I stopped running right were I was	0.081	0.358
h_3	I continued on my way	1.71×10^{-8}	0.074
JOCI			
p	Cheerleaders performs in a lift stunt.	Log	Margin
h_1	The stunt is a feat.	0.508	0.304
h_2	The stunt is no fluke.	0.486	0.279
h_3	The stunt is dangerous.	2.72×10^{-4}	0.166
h_4	The stunt is remarkable.	$ 4.13 \times 10^{-3}$	0.153
h_5	The stunt backfires.	$ 2.36 \times 10^{-4}$	0.107

Results on COPA

Related Discussions

Model adapted from the original BERT sentence pair model.MethodAccuracyPMI (Jabeen+, 2014)58.8PMI_EX (Gordon+, 2011)65.4CS (Luo+, 2016)70.2CS_MWP (Sasaki+, 2017)71.2BERT (cross-entropy)73.4BERT (margin)75.4

J. Opitz & A. Frank (2018): Addressing the Winograd Schema Challenge as a sequence ranking task. *1st Int'l Workshop on Language Congition and Computational Models.*

Paper

